

Etude expérimentale du comportement de parois avec montants poutres en I sous chargement excentré

Christophe Merz

31/03/2022

Siège social 10, rue Galilée 77420 Champs-sur-Marne Tél +33 (0)1 72 84 97 84 www.fcba.fr

Siret 775 680 903 00132 APE 7219Z Code TVA CEE : FR 14 775 680 903

Institut technologique FCBA : Forêt, Cellulose, Bois – Construction, Ameublement

Avec le soutien du

SOMMAIRE

1.	INTRODUCTION	2
	1.1 Contexte	2
	1.2 Objectifs	2
2.	ESSAIS	3
	 2.1 Essais de flambement	3 3 6 7
	 2.2 Essais de compression transversale sur traverse basse	. 17 . 17 . 18 . 21
3.	INTERPRETATION DES RESULTATS D'ESSAIS	29
	 3.1 Résistance au flambement	. <mark>29</mark> . 29 . 29
	 3.2 Répartition des efforts	. <mark>29</mark> . 29 . 32
	 3.3 Résistance à la compression transversale de la traverse	. <mark>33</mark> . 33 . 37
4.	ANALYSE	43
	 4.1 Essais de flambement	. 43 . 43 . 47 . 50 . 59
	 4.2 Essais de compression transversale sur traverse basse	. 62 erse . 63 erse . 67
5.	CONCLUSIONS	69

1. INTRODUCTION

1.1 Contexte

Un guide de prescription pour l'utilisation des poutres en I en parois verticales a été rédigé à la demande des professionnels de la poutre et des entreprises de la construction bois. Ce document vise notamment à décrire les principes de justification à établir pour assurer la stabilité mécanique de ces ouvrages, en se basant sur les référentiels et acquis techniques disponibles.

Or les règles de calcul de l'Eurocode 5 ne fournissent pas d'outils de justification spécifiquement adaptés à cette configuration de paroi ossature bois dont le montant n'est pas massif rectangulaire. Si le risque de flambement d'éléments à section composite peut être justifié conformément au §9 et à l'annexe C de l'EC5, l'approche présentée est conservatrice vis à vis du risque d'instabilité latérale, en considérant les membrures seules, sans prendre en compte la rigidité en torsion du montant.

De plus, les hypothèses retenues pour la répartition des efforts de compression dans les membrures peuvent s'avérer déterminantes pour la justification de la compression transversale de la traverse basse au droit des montants.

1.2 Objectifs

Les objectifs de cette étude expérimentale sur le comportement des parois à montants poutres en l soumis à de la compression avec un effort normal excentré sont les suivants :

- chercher à optimiser le dimensionnement vis-à-vis du risque d'instabilité
- mieux appréhender d'autre part les effets de la répartition des efforts vis-à-vis de la compression transversale de la traverse sous le montant.

2. ESSAIS

2.1 Essais de flambement

2.1.1 Description des essais

Le principe est de tester la résistance d'un trumeau de mur ossature bois avec montant poutre en l soumis à un effort de compression longitudinale en tête, centré ou excentré.

L'ossature du trumeau est composée d'un montant central avec la poutre en l à tester et de deux montants d'extrémité en bois massif de faible section.

Un panneau de contreventement est fixé sur l'ossature, d'un seul côté, appelé arbitrairement côté extérieur dans la suite du document.

L'effort de compression est appliqué au droit du montant central poutre en I, par l'intermédiaire d'une plaque de répartition aux dimensions adaptées.

Pour chaque configuration il a été réalisé :

✓ Un essai de compression avec effort centré ;

Photo 2 Plaque de répartition du chargement centré

Photo 1 Montage d'essai avec chargement centré

 Un essai de compression avec effort appliqué sur la membrure du côté opposé au panneau de contreventement, appelé arbitrairement côté intérieur dans la suite du document.

Photo 4 Plaque de répartition du chargement excentré sur montant côté intérieur

Photo 3 Montage d'essai avec chargement excentré

Pour chaque essai, au moins cinq corps d'épreuve ont été testés.

En pied de mur, les montants reposent directement sur des supports métalliques disposés de manière à éviter tout repos du panneau de contreventement.

Photo 5 Repos des montants en pied de trumeau

Quatre jauges de déformation ont été disposées sur chaque membrure :

- une jauge en partie haute sur chaque côté 1 et 2 ;
- une jauge en partie basse sur chaque côté 1 et 2.

Figure 1 Repérage des jauges de déformation Photo 6

Photo 7 Jauges Ext Haut 1 et Int Haut 1

Photo 8 Jauges Ext Bas 1 et Int Bas 1

Des capteurs de déplacement ont également été disposés pour mesurer l'évolution des déformations dans le plan et hors plan du mur à mi-hauteur au droit de la membrure côté intérieur de la poutre en l.

Photo 9 Capteur de déplacement hors plan

Photo 10 Capteur de déplacement dans le plan du mur

2.1.2 Corps d'épreuve

Les caractéristiques des corps d'épreuve testés sont récapitulées ci-dessous :

NI ^o	Trumeau		Poutre en I			Pa cont	anneau de reventement							
IN	Hauteur	Largeur	Membrures	Ame	Hauteur poutre	Panneau	Fixations							
1		0 mm 1196 BM C24 mm x 38 mr	BM C24		240 mm		Pointes annelées							
2	2800 mm		1196 45mm	2800 mm 1196 OSB	45mm	45mm	45mm	45mm	1196 45mm	196 45mm	OSB 3 12mm	360 mm	OSB 3 12 mm	2,8mmx50mm
3			x 38 mm		450 mm		entraxe 300 mm							

Figure 3 Sections des poutres en I

2.1.3 Résultats

Essais sous chargement centré

Résistances

Les valeurs maximales d'effort et de déflexions avant rupture sont récapitulées dans les tableaux suivants :

Poutre en I 240 mm						
Ref. corps	Charge vérin max		déflexi (m	on max nm)		
u epieuve	F _{max} (N)	Tupture	dx	dy		
16283.1/1	77637	A	66	2		
16283.1/2	76540	A	61	11		
16283.1/3	78672	A	44	2		
16283.1/4	75552	A	48	1		
16283.1/5	78763	A	48	1		
16283.1/6	62391	A	44	1		
Moyenne	74926					
maxi	78763					
mini	62391					
écart-type	6265					
CV	8,4%					

Poutre en I 360 mm						
Ref. corps d'épreuve	Charge vérin max	Charge vérin max		défle m (m	exion ax m)	
	Fmax (IN)		dx	dy		
16283.2/1	63015	А	93	23		
16283.2/2	50493	А	77	17		
16283.2/3	52356	А	16	2		
16283.2/4	60155	А	43	9		
16283.2/5	56483	А	34	1		
Moyenne	56501					
maxi	63015					
mini	50493					
écart-type	5221					
CV	9,2%					

Poutre en I 450 mm						
Ref. corps	Charge vérin max		déflexion max (mm)			
a epreuve	F _{max} (N)	rupture	dx	dy		
16283.3/1	48266	A	15	0		
16283.3/2	46848	A	109	0		
16283.3/3	43757	A	117	1		
16283.3/4	49819	A	24	1		
16283.3/5	50361	A	17	0		
Moyenne	47810					
maxi	50361					
mini	43757					
écart-type	2651					
CV	5,5%					

(1) Modes de rupture :

A : flambement dans le plan du mur du montant poutre en I par flexion-torsion et rupture de la couture panneau/membrure

Photo 11 Flambement par flexion-torsion poutre en İ 240 mm

Photo 12 Flambement par flexion-torsion poutre en İ 360 mm

Photo 13 Flambement par flexion-torsion poutre en Í 450 mm

Déformations longitudinales des montants •

Les courbes Effort / Déformation moyenne des jauges 1 et 2 sur chaque membrure sont reproduites ci-dessous

Poutre en I 240 mm

Etude expérimentale du comportement de parois avec montants poutres en I sous chargement excentré

Poutre en I 360 mm

Poutre en I 450 mm

Essais sous chargement excentré

Résistance

Les valeurs maximales d'effort et de déflexions avant rupture sont récapitulées dans les tableaux suivants :

Poutre en I 240 mm						
Ref. corps d'épreuve	Charge vérin max	Mode de rupture ⁽¹⁾	défle m (m	exion ax nm)		
	rmax (IN)		dx	dy		
16283.4/1	42687	A	25	2		
16283.4/2	44154	A	28	4		
16283.4/3	43086	A	14	5		
16283.4/4	35133	A	40	7		
16283.4/5	55629	A	9	5		
Moyenne	44138					
maxi	55629					
mini	35133					
écart-type	7354					
CV	16,7%					

Poutre en I 360 mm						
Ref. corps	Charge Mode de vérin max	déflexion max (mm)				
a epreuve	F _{max} (N)	rupture	dx	dy		
16283.5/1	42365	А	35	1		
16283.5/2	35219	A	23	1		
16283.5/3	32673	А	31	2		
16283.5/4	40290	А	25	1		
16283.5/5	36384	А	23	1		
Moyenne	37386					
maxi	42365					
mini	32673					
écart-type	3910					
CV	10,5%					

Poutre en I 450 mm						
Ref. corps	Charge vérin max	Mode de	déflexion max (mm)			
a epreuve	F _{max} (N)	rupture	dx	dy		
16283.6/1	30911	A	33	1		
16283.6/2	26441	A	30	1		
16283.6/3	34646	A	20	0		
16283.6/4	31502	A	39	1		
16283.6/5	32644	А	17	1		
Moyenne	31229					
maxi	34646					
mini	26441					
écart-type	3032					
CV	9,7%					

(1) Modes de rupture :

A : flambement de la poutre en I dans le plan du mur par flexion-torsion et rupture de la couture panneau/membrure

Photo 14 Flambement par flexion-torsion poutre en I 240 mm

Photo 15 Flambement par flexion-torsion poutre en I 450 mm

• Déformations longitudinales des montants

Les courbes Effort / Déformation moyenne des jauges 1 et 2 sur chaque membrure sont reproduites ci-dessous

Poutre en I 240 mm

Poutre en I 360 mm

Poutre en I 450 mm

2.2 Essais de compression transversale sur traverse basse

2.2.1 Description des essais

Le principe est de tester la résistance à la compression transversale de la traverse sous le montant poutre en l soumis à un effort de compression longitudinale en tête, centré ou excentré.

Le montant poutre en l est disposé verticalement au milieu d'une traverse basse de même largeur que celle du montant et de 75 cm de longueur, posée sur une semelle métallique au sol.

L'effort de compression est appliqué au droit du montant poutre en l, par l'intermédiaire d'une plaque de répartition aux dimensions adaptées.

Pour chaque configuration il a été réalisé :

Un essai de compression avec effort centré ;

Photo 16 Montage d'essai avec chargement centré

Photo 17 Montage d'essai avec chargement centré

✓ Un essai de compression avec effort appliqué sur une seule membrure.

Photo 18 Montage d'essai avec chargement excentré

Photo 19 Montage d'essai avec chargement excentré

En pied de montant, des capteurs de déplacement sont fixés sur les faces externes des membrures, permettant de mesurer en continu l'enfoncement dans la traverse.

Photo 20 Capteur de déplacement en pied de montant

Pour chaque essai, au moins cinq corps d'épreuve ont été testés.

2.2.2 Corps d'épreuve

Les caractéristiques des corps d'épreuve testés sont récapitulées ci-dessous :

Nº		Poutre en I	Traverse		
IN	Membrures	Ame	Largeur	Туре	Largeur
1	BM C24 45mm x 38mm	OSB 3 12mm	240 mm	LVL	240 mm
2			360 mm	45 mm	360 mm

3			450 mm	450 mm
4	LVL	Panneau fibres, dur	240 mm	240 mm
5	45mm x 39mm	HB.HLA1 8mm	360 mm	360 mm
6	BM C30 97mm x 47mm	OSB 3 10mm	450 mm	450 mm

FCB

INSTITUT TECHNOLOGIQUE

Figure 4 Poutres en I – 1 à 3

Figure 6 Traverse LVL

20

2.2.3 Résultats

Essais sous chargement centré

Un exemple de courbe effort/déplacement des deux capteurs pour un corps d'épreuve est reproduit ci-dessous :

Les différentes courbes Effort / Déplacement moyen des deux capteurs pour chaque configuration d'essai sont reproduites ci-dessous :

ement (m

n)

Dép

4.2

Essais sous chargement excentré

Un exemple de courbe effort/déplacement des deux capteurs pour un corps d'épreuve est reproduit ci-dessous :

Les différentes courbes Effort / Déplacement du capteur sur membrure chargée sont reproduites ci-dessous :

Observations

L'allure des courbes montre le plus souvent un comportement globalement élasto-plastique ductile, correspondant à l'écrasement en compression transversale de la traverse sous le montant poutre en l.

Néanmoins pour certains essais, notamment sous chargement excentré, la rupture du montant poutre en l intervient avant la plastification de la traverse.

En début d'essai, on observe un pied de courbe non linéaire plus ou moins accentué. Celui-ci est vraisemblablement lié aux conditions de contact du montant poutre en I sur la traverse, avec un repos des membrures ou de l'âme pouvant être partiel.

Pour certains essais, des ruptures de pente sont également observées en partie « élastique » de courbe, avant la plastification. Cette perte de raideur traduit vraisemblablement une redistribution d'effort entre membrures et âme, ce dernier tendant à s'écraser localement en pied.

L'examen des empreintes d'enfoncement dans la traverse montre une différence d'enfoncement entre l'âme et les membrures, y compris sous chargement centré.

Dans le cas du chargement excentré, les capteurs de déplacement et les empreintes au droit des membrures non chargées montrent que celles-ci ont été systématiquement soumises à de la compression.

Photo 21 Ecrasement de la traverse sous le montant poutre en l

Photo 22 Ecrasement de la traverse au droit de la membrure chargée

Photo 24 Poinçonnement de la membrure sous vérin en chargement excentré

Photo 23 Ecrasement de la traverse au droit de la membrure chargée

Photo 25 Rupture en pied de montant sous chargement excentré

Photo 26 Ecrasement de l'âme OSB en pied de montant

Photo 28 Ecrasement de l'âme en panneau de fibres dur en pied de montant

Photo 30 Enfoncement poutre en l âme OSB dans traverse sous chargement centré

Photo 27 Ecrasement de l'âme OSB en pied de montant

Photo 29 Ecrasement de l'âme en panneau de fibres dur en pied de montant

Photo 31 Enfoncement poutre en l âme fibres dans traverse sous chargement excentré

3. INTERPRETATION DES RESULTATS D'ESSAIS

3.1 Résistance au flambement

Les ruptures sont toutes survenues par flambement dans le plan du mur. La résistance au flambement peut donc être déduite des valeurs d'effort à rupture mesurées lors

des essais. La valeur de résistance caractéristique, R_{ck} , correspond au fractile de 5 % (niveau de confiance égal à 75%) selon la loi de distribution log-normale, conformément à NF EN 14358.

		Résistance R _c (N)	
	Poutre I	Poutre I	Poutre I
	240 mm	360 mm	450 mm
Moyenne	74926	56501	47810
Ecart-type	6265	5221	2651
COV	8,4%	9,2%	5,5%
Valeur caractéristique EN 14358	60585	44837	41554

3.1.1 Essais sous chargement centré

3.1.2 Essais sous chargement excentré

	Résistance R₀ (N)			
	Poutre I 240 mm	Poutre I 360 mm	Poutre I 450 mm	
Moyenne	44138	37386	31229	
Ecart-type	7354	3910	3032	
COV	16,7%	10,5%	9,7%	
Valeur caractéristique EN 14358	29201	28783	24274	

3.2 Répartition des efforts

La répartition des efforts dans les membrures peut être approchée à partir des courbes Effort / Déformation, en considérant un comportement élastique linéaire.

3.2.1 Détermination de la partie linéaire des courbes

Sur chaque courbe Effort / Déformation moyenne en tête ou en pied de membrure, on peut considérer une partie linéaire permettant de relier directement l'effort appliqué en tête de trumeau et la déformation moyenne mesurée.

On détermine le coefficient directeur de la droite, noté a :

$$a = \frac{\Delta N}{\Delta \varepsilon_f}$$

Un exemple de détermination est présenté sur le graphique ci-après correspondant au corps d'épreuve 16283.1/2 (poutre en l 240 mm avec effort centré).

Les différentes valeurs ainsi déterminées pour les différents corps d'épreuve sont présentées cidessous.

	Poutre	e en l 240 mr	n	
		a= ΔN/Δε _{fi}	(N/µm/m)	
Ref. corps	Haut		Ba	as
a ^r epreuve	Int	Ext	Int	Ext
16283.1/1	43	87	67	44
16283.1/2	139	81	50	55
16283.1/3	47	43	38	44
16283.1/4				
16283.1/5	76	146	43	127
16283.1/6	47	383	38	43
Moyenne	70	148	47	63
maxi	139	383	67	127
mini	43	43	38	43
écart-type	41	136	12	36
CV	58%	92%	26%	58%

Essais sous chargement centré

	Poutre	en I 360 mr	n	
		a= ΔN/Δε _{fi}	(N/µm/m)	
Ref. corps d'épreuve	Hai	ut	Ba	as
	Int	Ext	Int	Ext
16283.2/1	88	97	43	68
16283.2/2	45	56	82	112
16283.2/3	99	131	49	1479
16283.2/4	64	48	38	72
16283.2/5	46	63	65	68
Moyenne	68	79	55	360
maxi	99	131	82	1479

mini	45	48	38	68
écart-type	24	35	18	626
CV	36%	44%	33%	174%

	Poutre	e en I 450 mr	n	
		a= ΔN/Δε _{fi}	(N/µm/m)	
Ref. corps	Ha	ut	Ba	as
a epreuve	Int	Ext	Int	Ext
16283.3/1	95	258	84	138
16283.3/2	47	216	58	128
16283.3/3	54	247	44	162
16283.3/4	63	244	55	264
16283.3/5	58	130	54	61
Moyenne	63	219	59	151
maxi	95	258	84	264
mini	47	130	44	61
écart-type	19	52	15	74
CV	29%	24%	25%	49%

Essais sous chargement excentré

	Poutre	e en l 240 mr	n			
	a= ΔΝ/Δε _f (N/μm/m)					
Ref. corps	На	ut	Ba	as		
arepreuve	Int	Ext	Int	Ext		
16283.4/1	33	1000	41	48		
16283.4/2	20	1000	102	40		
16283.4/3	19	1000	92	40		
16283.4/4	41	1000	27	1000		
16283.4/5	19	-1284	100	214		
Moyenne	26	543	72	268		
maxi	19	-1284	27	40		
mini	41	1000	102	1000		
écart-type	10	1021	36	416		
CV	38%	188%	49%	155%		

	Poutre	en I 360 mr	n	
		a= ΔN/Δε _{fi}	(N/µm/m)	
Ref. corps	Ha	ut	Ba	as
arepreuve	Int	Ext	Int	Ext
16283.5/1	27	-1259	100	49
16283.5/2	18	-4500	79	30
16283.5/3	22	-1200	25	-1200
16283.5/4	27	-1000	83	41
16283.5/5	26	-2100	80	41
Moyenne	24	-2012	73	-208
maxi	18	-4500	25	-1200
mini	27	-1000	100	49
écart-type	4	1453	28	555
CV	16%	-72%	39%	-267%

	Poutre en I 450 mm				
		a= ΔN/Δε _f	i (N/μ m/m)		
Ref. corps	Haut		Ba	as	
arepreuve	Int	Ext	Int	Ext	
16283.6/1	20	-869	104	76	
16283.6/2	20	-608	63	66	
16283.6/3	35	-1395	98	83	
16283.6/4	25	-694	66	65	
16283.6/5	24	-1268	81	91	
Moyenne	25	-967	59	151	
maxi	20	-1395	84	264	
mini	35	-608	44	61	
écart-type	6	349	15	74	
CV	25%	-36%	25%	49%	

3.2.2 Approche de répartition des efforts

Dans le domaine linéaire élastique, l'effort normal dans chaque membrure N_{fi} est donné par la loi de Hooke : $N_{fi} = E_{fi} \cdot A_{fi} \cdot \varepsilon_{fi}$

A_{fi} : section de la membrure

E_{fi} : module d'élasticité de la membrure

Dans la partie linéaire de chaque courbe, la déformation dans la membrure $\epsilon_{\rm fi}$ est liée à l'effort N en tête de poutre :

$$\frac{N}{\varepsilon_{fi}} = \frac{\Delta N}{\Delta \varepsilon_{fi}} = a, \text{ pente de la partie linéaire de la courbe}$$

La part d'effort normal dans une membrure, N_{fi}/N, peut donc être déduite par la relation :

$$\frac{N_{fi}}{N} = \frac{E_{fi} \cdot A_{fi}}{\Delta N / \varepsilon_{fi}} = \frac{E_{fi} \cdot A_{fi}}{a}$$

Ainsi, en faisant l'hypothèse approximative d'un module moyen et constant de E_{fi} =11000 N/mm² pour toutes les membrures, les valeurs de part d'effort normal dans chaque membrure déduites des moyennes des courbes d'essai sont présentées dans le tableau suivant:

		chargement centré			char	gement exce	entré
		N _{fi} /N				N _{fi} /N	
		240 mm	360 mm	450 mm	240 mm	360 mm	450 mm
Hout	Int	33%	30%	31%	79%	80%	79%
naul	Ext	21%	27%	9%	1%	-1%	-2%
Poo	Int	42%	37%	16%	35%	33%	24%
DdS	Ext	36%	20%	33%	29%	38%	25%

3.3 Résistance à la compression transversale de la traverse

3.3.1 Détermination de Fc90.max suivant NF EN 408

La détermination de la résistance à la compression transversale est menée suivant les principes du §17.3 de la norme NF EN 408, en utilisant le procédé itératif suivant :

- ✓ Estimer une valeur de force maximale en compression transversale F_{c.90,max.est}
- Tracer la droite 1 passant par 0,1F_{c,90,max,est} et 0,4F_{c,90,max,est}
 Tracer la droite 2 parallèle à la droite 1 avec un décalage de 0,01 h_t
- ✓ L'intersection entre la courbe d'essai et la droite 2 est F_{c.90,max} Si $F_{c,90,max}$ - $F_{c,90,max,est} \le \pm 5\%$ $F_{c,90,max,est} \Longrightarrow$ $F_{c,90,max}$ = $F_{c,90,max,est}$ Sinon répéter la procédure

Figure 7 Diagramme force/déplacement (extrait NF EN 408)

Les résultats obtenus avec les graphiques correspondants sont présentés ci-dessous. La valeur caractéristique correspond au fractile de 5 % (niveau de confiance égal à 75%) selon la loi de distribution log-normale, conformément à NF EN 14358.

Essais sous chargement centré

6

ř

Etude expérimentale du comportement de parois avec montants poutres en l sous chargement excentré

-1.1

-2 theas

-2_2Fm4#

-2_3Offset

2 40ffset

2.4fmax

2,5Fmail

н

-2.2

Ref.	Force max F _{c,90max} (N)	5 Centré	
5_1	49200	1000	
5_2	44940	7000	
5_3	58657		
5_4	54261	area 3.30m	
5_5	58000	£ 50000 5-4fman	5_1
Moyenne	53012	I man	
Maxi	58657		
Mini	44940	1000	-3_0mm
Écart-type	5874	20000	
CV	11,1%		— 5_3Fman
Valeur caractéristique EN 14358	39873	10000 a 0 1 2 3 4 5 6 7 8 Orgheement (new)	

Essais sous chargement excentré

Ref.	Force max F _{c,90max} (N)	2 Excentré	8
2_1	43194	1. 8mm	
2_2	52515	5000	-2,3
2_3	45815	1.5mm	
2_4	46179	40000	-2,7
2_5	45852		
Moyenne	46711	<u>§</u> 9 3000	
Maxi	52515	2	
Mini	43194		2, 3fmas
Écart-type	3460	2000	
CV	7,4%		2_4Fmaa
Valeur caractéristique EN 14358	39048	10000 0 1 2 3 4 5 6 Deplecement (mm)	

Etude expérimentale du comportement de parois avec montants poutres en I sous chargement excentré

✓ Commentaires

On observe une certaine sensibilité du mode de détermination de la force maximale de la norme NF EN 408 appliqué ici à un corps d'épreuve composite.

Les effets des pieds de courbe et rupture de pente, conduisent à une variabilité significative pour certains essais où le coefficient de variation atteint 15 à 18%.

Contrairement à la courbe « idéale » figurant dans la norme, les valeurs de force maximale en compression transversale $F_{c,90,max}$ déterminées avec décalage de la partie élastique de 1% de la hauteur initiale de la traverse n'atteignent que rarement la partie de courbe correspondant à la plastification.

3.3.2 Détermination de F_{c,90,max} avec décalage de la partie élastique de 2,5% h_t

On reprend le principe de détermination de force maximale en compression transversale $F_{c,90,max}$ itératif décrit précédemment mais cette fois ci avec un décalage de la partie élastique de 2,5% de la hauteur initiale de la traverse.

Ce niveau de déformation en compression transversale correspond au premier seuil de contrainte maximale envisagé dans le projet de révision de l'Eurocode 5.

Les valeurs ainsi obtenues sont présentées ci-dessous :

Essais sous chargement centré

Ref.	Force max F _{c,90max} (N)
3_1	ND
3_2	ND
3_3	ND
3_4	75744
3_5	ND

Ref.	Force max F _{c,90max} (N)	Store	
5_1	62424	3.3ma	
5_2	58787	7000 1.4914	
5_3	74733	6000	
5_4	69171	- 1000	
5_5	75290		
Moyenne	68081		
Maxi	75290	xxxx	
Mini	58787	2000	
Écart-type	7345		
CV	10,8%		S_almer
Valeur caractéristique EN 14358	51731	a 1 2 3 4 5 6 7 4 Bégisseren (not)	55 550het 550het

Essais sous chargement excentré

Rof	Force max	1 Excentré
itei.	F _{c,90max} (N)	8000
1_1	59646	2000
1_2	54756	
1_3	53459	6000 -1-firm
1_4	46024	
1_5	52877	1_4/max
Moyenne	53352	1 anno -U
Maxi	59646	2 -1,50%
Mini	46024	2000
Écart-type	4887	
CV	9,2%	-1,4ma 1,5
Valeur caractéristique EN 14358	42233	10000

Ref.	Force max F _{c,90max} (N)	3 Excentré	
3_1	44343	ammo 3_dimaa	
3_2	ND		
3_3	ND	3.0mm	3_10fhet
3_4	61799	3.SFriak	3_2
3_5	ND	2000	
Moyenne	53071	30000 2000 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2	

Etude expérimentale du comportement de parois avec montants poutres en l sous chargement excentré

✓ Commentaires

Certaines valeurs n'ont pu être déterminées (ND), la rupture du corps d'épreuve étant survenue avant le niveau de déformation de 2,5% h considéré.

On constate un resserrement des résultats avec des valeurs de coefficient de variation principalement inférieures ou égales à 10%.

Les valeurs de force maximale en compression transversale $F_{c,90,max}$ se situent en limite haute de la partie linéaire ou en zone de plastification.

4. ANALYSE

4.1 Essais de flambement

Les résultats obtenus expérimentalement sont comparés à ceux déterminés par approche analytique et modélisation aux éléments finis.

4.1.1 Etude du montant poutre en l sans prise en compte du panneau

Les caractéristiques des sections des trois poutres en l testées sont récapitulées ci-dessous :

	Poutre en I 240 mm											
	bi	hi	Ai	l _{yi}	l _{zi}	Ei	ai	EiAi	Eilyi+EiAiai ²			
	(mm)	(mm)	(mm²)	(mm ⁴)	(mm ⁴)	(N/mm ²)	(mm)	(N)	(N.mm ²)			
1	45	38	1710	205770	288563	11000	101	18810000	1,94144E+11			
2	12	164	1968	4410944	23616	3000	0	5904000	13232832000			
3	45	38	1710	205770	288563	11000	-101	18810000	1,94144E+11			
Total		240					202	43524000	(EI) _{ef} =			
									4,015214E+11			

	Poutre en I 360 mm												
	bi	hi	Ai	l _{yi}	l _{zi}	Ei	ai	EiAi	Eilyi+EiAiai ²				
	(mm)	(mm)	(mm²)	(mm ⁴)	(mm ⁴)	(N/mm ²)	(mm)	(N)	(N.mm ²)				
1	45	38	1710	205770	288563	11000	161	18810000	4,89837E+11				
2	12	284	3408	22906304	40896	3000	0	10224000	68718912000				
3	45	38	1710	205770	288563	11000	-161	18810000	4,89837E+11				
Total		360					322	47844000	(EI) _{ef} =				
									1,048394E+12				

	Poutre en I 450 mm												
	bi	hi	Ai	l _{yi}	l _{zi}	Ei	ai	EiAi	Eilyi+EiAiai ²				
	(mm)	(mm)	(mm²)	(mm ⁴)	(mm4)	(N/mm ²)	(mm)	(N)	(N.mm ²)				
1	45	38	1710	205770	288563	11000	206	18810000	8,00485E+11				
2	12	374	4488	52313624	53856	3000	0	13464000	1,56941E+11				
3	45	38	1710	205770	288563	11000	-206	18810000	8,00485E+11				
Total		450					412	51084000	(EI) _{ef} =				
									1,757910E+12				

Répartition des efforts sous effort normal centré N

Les contraintes normales se répartissent dans chaque partie de section au prorata des raideurs axiales :

$$\sigma_i(N) = \frac{E_i N}{\sum E_i A_i}$$

La part d'effort normal dans chaque partie est donc obtenue par la relation :

$$\frac{N_i}{N} = \frac{E_i A_i}{\sum E_i A_i}$$

Les valeurs de part d'effort normal dans chaque partie Ni/N ainsi obtenues pour les trois poutres en I sous chargement centré sont présentées dans le tableau suivant :

	Ni/N							
	240 mm	360 mm	450 mm					
1	0,43	0,39	0,37					
2	0,14	0,21	0,26					
3	0,43	0,39	0.37					

• sous effort normal N d'excentricité e

La contrainte normale moyenne au centre de la gravité de chaque membrure est :

$$\sigma_i = \sigma_i(N) + \sigma_i(M)$$

Avec

$$\sigma_i(M) = \frac{E_i a_i M}{(EI)_{ef}}$$

M = e.Ne =a₃, pour un effort appliqué sur la membrure (partie n°3)

La part d'effort normal dans chaque partie est donc obtenue par la relation :

$$\frac{N_i}{N} = \frac{E_i A_i}{\sum E_i A_i} + \frac{E_i A_i a_i a_3}{(EI)_{ef}}$$

Les valeurs de part d'effort normal dans chaque partie Ni/N ainsi obtenues pour les trois poutres en I sous chargement excentré sont présentées dans le tableau suivant :

	Ni/N							
	240 mm	360 mm	450 mm					
1	0,91	0,86	0,82					
2	0,14	0,21	0,26					
3	-0,05	-0,07	-0,09					

• Commentaires

Dans le cas d'un chargement centré, l'approche théorique sur montant poutre en l seul montre un niveau de sollicitation de l'âme qui n'est pas négligeable.

Dans le cas d'un chargement excentré sur une membrure, celle-ci reprend théoriquement la majeure partie de l'effort et l'autre membrure est totalement soulagée.

L'évaluation de la répartition des efforts lors des essais sur trumeau met en évidence une redistribution de l'effort entre les membrures sur la hauteur, liée au panneau de contreventement.

Résistance au flambement

• Sous effort normal centré N

Conformément à l'EC5, la résistance caractéristique à la compression axiale avec risque de flambement de la poutre en l sous effort normal centré est :

$$N_{k} = \min(k_{c,y}; k_{c,z}) f_{c,0,k} \frac{\sum E_{i} A_{i}}{E_{m,f}} = \min(k_{c,y}; k_{c,z}) N_{k}^{*}$$

Etude expérimentale du comportement de parois avec montants poutres en I sous chargement excentré

Avec

Nk*, résistance caractéristique à la compression sans risque de flambement

$$N_k^* = f_{c,0,k} \frac{\sum E_i A_i}{E_{m,f}}$$

- fc0,k, résistance caractéristique à la compression des membrures
- k_{cy} et k_{cz}, facteurs d'instabilité vis-à-vis du risque de flambement, suivant l'axe fort et l'axe faible respectivement.

Les facteurs d'instabilité sont déterminés suivant §6.3.2 de l'EC5 à partir des rapports d'élancement relatifs $\lambda_{rel.y}$ et $\lambda_{rel.z}$.

Ces rapports d'élancements relatifs dépendent des propriétés du matériau :

$$\lambda_{rel,y \text{ ou } z} = \sqrt{\frac{f_{c,0,k}}{\sigma_{cr,y \text{ ou } z}}}$$

Avec

 $\sigma_{cr,y \text{ ou } z}$, contrainte critique en compression vis-à-vis du flambement suivant y ou z.

$$\sigma_{cr,y \text{ ou } z} = \frac{N_{cr,y \text{ ou } z}}{A} = \frac{\pi^2}{A} \frac{EI_{y \text{ ou } z}}{l_{y \text{ ou } z}^2}$$

Ils sont donc déduits des rapports d'élancement mécanique par la relation suivante :

$$\lambda_{rel,y ou z} = \frac{\lambda_{y ou z}}{\pi} \sqrt{\frac{f_{c,0,k}}{E_{0,05}}}$$

• Suivant l'axe fort (instabilité hors plan de la paroi), le calcul du rapport d'élancement efficace λ_{ef} de la section composite, basé sur la méthode de calcul des poteaux reconstitués de l'Annexe C de l'EC5, est donné par :

$$\lambda_{ef,y} = l_y \sqrt{\frac{A_{tot}}{I_{ef}}} = l_y \sqrt{\frac{\sum E_i A_i}{(EI)_{ef}}}$$

avec :

 I_{y} : longueur de flambement hors plan du montant A_{tot} : aire totale de la section en compression I_{ef} : moment d'inertie efficace obtenu par :

$$I_{ef} = \frac{(EI)_{ef}}{A_{tot}}$$
$$E_{mean} = \frac{\sum E_i A_i}{A_{tot}}$$

• Suivant l'axe faible (instabilité dans le plan de la paroi), le rapport d'élancement, est déterminé par la relation suivante :

$$\lambda_{ef,z} = l_z \sqrt{\frac{\sum E_i A_i}{\sum E_i I z_i}}$$

 I_z : longueur de flambement de la membrure dans le plan de la paroi $I_{z,i}$: moment d'inertie de chaque partie par rapport à l'axe z

Les valeurs de résistance à la compression sans risque de flambement N_k*, d'effort normal critique élastique de flambement N_{cr,y ou z}, de facteurs d'instabilité k_{c,y ou z} et la résistance caractéristique à la compression axiale avec risque de flambement de la poutre en I sous effort normal centré ainsi déterminées pour les trois poutres en I sont présentées dans le tableau suivant :

		240 mm	360 mm	450 mm
	Nk* (kN)	83,1	91,3	97,5
Axe fort	N _{cr,y} (kN)	505	1320	2213
(instabilité hors plan)	k _{c,y}	0,975	0,998	1,0
	k _{c,y} Nk*(kN)	81,0	91,1	97,5
Axe faible	N _{cr,z} (kN)	8,1	8,1	8,2
(instabilité dans plan)	k _{c,z}	0,064	0,059	0,055
	k _{c,z} N _k * (kN)	5,3	5,4	5,4
	N _k (kN)	5,3	5,4	5,4

• Sous effort normal N d'excentricité e

La résistance caractéristique sous effort normal excentré avec risque de flambement peut être déterminée à partir de la relation suivante :

1

$$\frac{N_k}{k_c N_k^*} + \frac{N_k \cdot e}{M_k} =$$

Avec

M_k, moment résistant caractéristique, de la poutre en I, avec risque de flambement :

$$M_{k} = \frac{(EI)_{ef}}{E_{m,f}} \cdot \min \begin{cases} \frac{f_{m,k}}{0,5h} \\ \min(k_{c,y}, k_{c,z}) f_{c,0,k} \\ f_{t,0,k} \\ a_{3} \end{cases}$$

 $e = a_1$, pour un effort appliqué sur la membrure (partie n°1)

Les résultats ainsi obtenus pour les trois montants poutre en l étudiés sont récapitulés dans le tableau ci-dessous :

		240 mm	360 mm	450 mm
	Nk* (kN)	83,1	91,3	97,5
Axe fort	k _{c,y}	0,975	0,998	1,0
(instabilité hors plan)	Mk(kN)	7,3	12,4	16,3
	Nk (kN)	38,2	41,7	43,7
Axe faible	k _{c,z}	0,064	0,059	0,055
(instabilité dans plan)	M _k (kN.m)	0,48	0,91	1,19
	Nk (kN)	2,5	2,5	2,4
	N _k (kN)	2,5	2,5	2,4

• Commentaires

L'instabilité du montant poutre en I seul, de section transversale à deux plans de symétrie, intervient avec des déplacements latéraux dans un des deux plans. Ce plan est celui de moindre inertie (plan du mur) avec une longueur libre et des conditions d'appui identiques dans les deux directions.

A titre indicatif, l'obtention du niveau de performance mesuré par essai nécessiterait d'introduire des éléments de stabilisation de la membrure intérieure, limitant la longueur de flambement suivant le plan du mur à :

- 750 mm pour la poutre en I de 240 mm
- 915 mm pour la poutre en I de 360 mm
- 975 mm pour la poutre en I de 450 mm

Cette approche, très sécuritaire, n'est pas représentative du comportement du montant dont une membrure est maintenue par le panneau de contreventement.

4.1.2 Etude du montant poutre en l'avec prise en compte du panneau

La prise en compte de la stabilisation apportée par le panneau de contreventement peut être approchée de manière analytique en considérant une poutre en l à membrures inégales.

Résistance au flambement

• Flambement par flexion-torsion d'une poutre en l monosymétrique

Dans le cas d'une section transversale en l à un seul plan de symétrie, le centre de gravité et le centre de cisaillement ne coïncident pas. L'instabilité intervient en combinant des déplacements de flexion et de torsion.

L'étude du flambement peut être menée en utilisant la partie 3 de l'Eurocode 3 (EN 1993-1-3 - Règles supplémentaires pour les profilés et plaques formés à froid) ou l'Annexe I de l'Eurocode 9 (EN 1999-1-1 Calcul des structures en aluminium) qui permettent de déterminer l'effort critique élastique pour le flambement par flexion-torsion.

Dans le cas d'un poteau de section mono-symétrique et de longueur de flambement identique en flexion et torsion, l'effort critique de flambement par flexion-torsion, noté N_{cr,TF}, est déterminé par la relation suivante :

$$N_{cr,TF} = \frac{N_{cr,y}}{2\beta} \left[1 + \frac{N_{cr,T}}{N_{cr,y}} - \sqrt{\left(1 - \frac{N_{cr,T}}{N_{cr,y}}\right)^2 + 4\left(\frac{y_0}{i_0}\right)^2 \frac{N_{cr,T}}{N_{cr,y}}} \right]$$

Avec

 $N_{\text{cr,y\,ou\,}z}$ effort normal critique élastique de flambement par flexion par rapport à l'axe y ou z

$$N_{cr,y \text{ ou } z} = \frac{\pi^2 E I_{y \text{ ou } z}}{{l_f}^2}$$

N_{cr,T}, effort critique de flambement par torsion, déterminé par la relation suivante :

$$N_{cr,T} = \frac{1}{i_0^2} (GI_{tor}) + \frac{\pi^2 EI_w}{l_f^2}$$

où :

 GI_{tor} est la rigidité en torsion de la section, déterminé pour une section composite en l par a relation suivante :

$$(GI_{tor}) = \sum_{i=1}^{3} G_i I_{tor,i}$$

G est le module de cisaillement

 $I_{\text{tor}},$ moment d'inertie de torsion, déterminé pour une section rectangulaire par la relation suivante :

$$I_{tor} = \frac{b^3 h}{3} (1 - 0.63 \frac{b}{h})$$
, avec b>h

 I_w est le moment d'inertie sectoriel (constante de gauchissement), déterminé pour une section composite en I par la relation suivante :

$$I_{w} = \frac{I_{z1} \cdot (a_{1} + a_{3})^{2}}{1 + \frac{E_{1}I_{z1}}{E_{3}I_{z3}}}$$

 $I_{\rm f}$ est la longueur de flambement par torsion et par flexion i_0 déterminé par la relation suivante :

$$i_0^2 = i_y^2 + i_z^2 + z_0^2$$

 $i_{y \text{ ou } z}$ est le rayon de giration par rapport à l'axe y ou z z₀ est la distance entre le centre de cisaillement et le centre de gravité de la section transversale,

$$z_0 = \frac{(a_1 + a_3)E_1I_1}{E_1I_1 + E_3I_3} - a_3$$

β, obtenu par la relation suivante :

$$\beta = 1 - \left(\frac{y_0}{i_0}\right)^2$$

Pour une justification suivant l'Eurocode 5, on peut alors déterminer les facteurs d'instabilité $k_{c,y}$ _{ou z ou T ou TF} à partir de l'élancement relatif lié aux propriétés du matériau :

$$\lambda_{rel,TF} = \sqrt{\frac{f_{c,0,k}}{\sigma_{cr,y \text{ ou } z \text{ ou } T \text{ ou } TF}}}$$

Avec

 $\sigma_{cr,TF}$, contrainte critique en compression vis-à-vis du flambement par flexion-torsion.

$$\sigma_{cr,TF} = \frac{N_{cr,TF}}{A_{eq}}$$
$$A_{eq} = \frac{\sum E_i A_i}{E_{0,05,f}}$$

Suivant les principes du §4.1.1, la résistance caractéristique à la compression axiale avec risque de flambement de la poutre en I sous effort normal centré est :

$$N_{k} = \min(k_{c,y}; k_{c,z}; k_{c,T}; k_{c,TF}) f_{c,0,k} \frac{\sum E_{i}A_{i}}{E_{m,f}} = N_{k}^{*} \cdot \min(k_{c,y}; k_{c,z}; k_{c,T}; k_{c,TF})$$

Avec

Nk*, résistance caractéristique à la compression sans risque de flambement :

$$N_k^* = f_{c,0,k} \frac{\sum E_i A_i}{E_{m,f}}$$

f_{c0,k}, résistance caractéristique à la compression des membrures

Dans le cas d'un effort normal d'excentricité e, la résistance caractéristique avec risque de flambement peut être déterminée à partir de la relation suivante :

$$\frac{N_k}{\min(k_{c,y}; k_{c,z}; k_{c,T}; k_{c,TF}) N_k^*} + \frac{N_k.e}{M_k} = 1$$

M_k, moment résistant caractéristique, de la poutre en I, avec risque de flambement :

$$M_{k} = \frac{(EI)_{ef}}{E_{m,f}} \cdot \min \begin{cases} \frac{f_{m,k}}{0,5h} \\ \min(k_{c,y}, k_{c,z}; k_{c,T}; k_{c,TF}) f_{c,0,k} \\ f_{t,0,k} \\ a_{3} \end{cases}$$

• Détermination d'une poutre en l « équivalente »

En appliquant cette méthode aux poutres en l testées, on peut déterminer les propriétés géométriques d'une membrure « équivalente » conduisant à une valeur d'effort caractéristique de flambement par flexion-torsion proche de celle obtenue expérimentalement.

En retenant une membrure en C24 de 113 mm de largeur par 50 mm d'épaisseur, les caractéristiques des sections des trois poutres en I « équivalentes » sont les suivantes :

	Poutre en I 240 mm « équivalente »											
	bi	hi	Ai	ai	Z 0	Ely	Elz	Gltor	lw			
	(mm)	(mm)	(mm²)	(mm)	(mm)	(N.mm ²)	(N.mm ²)	(N.mm ²)	(mm ⁶)			
1	45	38	1710	155,7		2,263E+09	3,174E+09	2,786E+08				
2	12	164	1968	54,7		1,323E+10	7,085E+07	9,732E+07				
3	113	50	5650	-52,3		1,295E+10	6,613E+10	2,346E+09				
Total		252		208,0	-42,79	(EI) _y =	6,938E+10	2,722 E+09	1,191E+10			
						6,721E+11						

	Poutre en I 360 mm « équivalente »												
	bi	hi	Ai	ai	Z 0	Ely	Elz	Gl _{tor}	lw				
	(mm)	(mm)	(mm²)	(mm)	(mm)	(N.mm ²)	(N.mm ²)	(N.mm²)	(mm ⁶)				
1	45	38	1710	241,6		2,263E+09	3,174E+09	2,786E+08					
2	12	284	3408	80,6		6,872E+10	1,227E+08	1,720E+08					
3	113	50	5650	-86,4		1,295E+10	6,613E+10	2,346E+09					
Total		372		328,0	-71,36	(EI) _y =	6,943E+10	2,797 E+09	2,962E+10				
						1,712E+12							

	Poutre en I 450 mm « équivalente »											
	bi	hi	Ai	ai	Z 0	Ely	Elz	Gl _{tor}	lw			
	(mm)	(mm)	(mm ²)	(mm)	(mm)	(N.mm ²)	(N.mm ²)	(N.mm ²)	(mm ⁶)			
1	45	38	1710	241,6		2,263E+09	3,174E+09	2,786E+08				
2	12	374	1968	80,6		1,569E+11	1,615E+08	2,280E+08				
3	113	50	5650	-86,4		1,295E+10	6,613E+10	2,346E+09				
Total		462		418,0	-94,35	(EI) _y =	6,947E+10	2,853 E+09	4,811E+10			
						2,847E+12						

Les valeurs de résistance à la compression sans risque de flambement N_k^* , d'effort normal critique élastique de flambement $N_{cr,y}$, $N_{cr,z}$, $N_{cr,T}$, $N_{cr,TF}$, les facteurs d'instabilité correspondants et la résistance caractéristique à la compression axiale avec risque de flambement de la poutre en I sous effort normal centré ainsi déterminés pour les trois poutres en I sont présentées dans le tableau suivant :

		240 mm	360 mm	450 mm
	Nk* (kN)	165,8	174,1	180,3
Axe fort	N _{cr,y} (kN)	846,1	2515,5	3584,6
	k _{c,y}	0,967	0,995	1,0
Axe faible	N _{cr,z} (kN)	87,3	87,4	87,5
	k _{c,z}	0,330	0,316	0,305
Torsion	N _{cr,T} (kN)	278,5	130,2	88,4
	k _{c,⊤}	0,814	0,456	0,309
Torsion flexion	N _{cr,TF} (kN)	81,4	70,3	59,7
	k _{c,TF}	0,309	0,257	0,212
	N _k (kN)	51,2	44,7	38,2

Dans le cas d'un effort normal excentré, les valeurs de résistance caractéristique sont présentées ci-dessous :

		240 mm	360 mm	450 mm
	k _{c,TF}	0,309	0,257	0,212
Effort normal excentré	M _k (kN.m)	2,55	3,47	3,78
(e=a1)	N _k (kN)	12,4	10,9	9,4

Commentaires

La section de membrure « équivalente » de 113x50 permet d'obtenir des valeurs de résistance caractéristique au flambement proches des valeurs caractéristiques expérimentales sous effort normal centré.

En revanche dans le cas d'un effort normal excentré, les valeurs de résistance caractéristique ainsi déduites sont nettement inférieures aux valeurs obtenues par essais.

On peut considérer que la prise en compte d'un moment résistant caractéristique avec application du facteur d'instabilité sur la membrure comprimée seule est très sécuritaire et pas vraiment représentative du comportement global en flexion-torsion.

Si on retient le moment résistant de la poutre en l sans risque de flambement, Mk*, tel que

$$M_{k}^{*} = \frac{(EI)_{ef}}{E_{m,f}} \cdot \min \begin{cases} \frac{f_{m,k}}{0,5h} \\ f_{c,0,k}/a_{1} \\ f_{t,0,k}/a_{3} \end{cases}$$

les valeurs de résistance caractéristique sous effort normal d'excentricité e, obtenues sont présentées ci-dessous :

		240 mm	360 mm	450 mm
Effort normal excentré	M _k * (kN.m)	8,2	13,5	17,9
(e=a ₁)	Nk (kN)	26,0	24,9	23,1

On constate alors une bonne corrélation avec les résultats d'essais.

4.1.3 Analyses par modélisations aux éléments finis

Des analyses par modélisations aux éléments finis ont été effectuées à l'aide du logiciel Acord afin d'étudier la répartition des efforts d'une part et la résistance au flambement d'autre part.

Définition des modèles

- Modèles sans panneau de contreventement
- Les poutres en l sont modélisées par deux éléments de section rectangulaire 45x38 mm² en C24 reliées par une plaque représentant l'âme en OSB 3 de 12 mm. La liaison entre les membrures et la plaque d'âme est rigide.

Figure 8 Modèle sans panneau

- Conditions d'appuis :
 - 3 points d'appui en pied de montant poutre en I, avec un point d'appui pour chaque partie (points 1 à 3), bloquent les translations dans les trois directions X, Y, Z et la rotation autour de l'axe Z;
 - 2 points d'appui en tête de montant poutre en I (points 4 et 5) bloquent les translations horizontales X et Y et la rotation autour de l'axe Z;
 - des points d'appuis maintiennent la membrure extérieure, suivant l'espacement entre fixations du voile avec une raideur transversale K_{ser}=854 N/mm (pointes φ2,8 mm).
- Modèles avec panneau
- Les montants d'extrémité sont modélisés par des éléments de section rectangulaire 45x38 mm² en C24.
- Le panneau de contreventement est modélisé par une plaque en OSB 3 de 12 mm.
- La fixation du panneau sur la membrure extérieure de la poutre en I et sur les montants d'extrémité est modélisée par de courtes barres très rigides dont l'extrémité côté montants présente une raideur transversale K_{ser} = 854 N/mm

Figure 9 Modèle avec panneau

- Conditions d'appui :
 - 5 points d'appui en pied de :
 - 3 points d'appui en pied de montant poutre en I, un point d'appui est défini pour chaque partie (points 1 à 3) trumeau, bloquant les translations dans les trois directions X, Y, Z et la rotation autour de l'axe Z,
 - 1 point d'appui à chaque montant d'extrémité (points 4 et 5) bloquant la translation dans la direction Z.
 - 2 points d'appui en tête de montant poutre en I (points 6 et 7) bloquent les translations horizontales X et Y et la rotation autour de l'axe Z.
- Modèles « équivalents » sans panneau avec membrure extérieure 113x50
- Les poutres en I « équivalentes » sont modélisées par un élément de section rectangulaire 113x50 mm² et un élément de section rectangulaire 45x38 mm² en C24 reliées par une plaque représentant l'âme en OSB 3 de 12 mm. La liaison entre les membrures et la plaque d'âme est rigide.

Figure 10 Modèle « équivalent » sans panneau

- Conditions d'appuis :
 - 3 points d'appui en pied de montant poutre en I, avec un point d'appui pour chaque partie (points 1 à 3), bloquent les translations dans les trois directions X, Y, Z et la rotation autour de l'axe Z;
 - 2 points d'appui en tête de montant poutre en I (points 6 et 7) bloquent les translations horizontales X et Y et la rotation autour de l'axe Z.

Cas de chargement

- Le chargement centré est représenté par une charge uniformément répartie le long de la distance entre centre de gravité des membrures (entre points 6 et 7), correspondant à une charge totale de 1kN.

Figure 11 Poutre 240 mm Chargement centré

Figure 12 Poutre 360 mm Chargement centré

Figure 13 Poutre 450 mm Chargement centré

- Le chargement excentré est représenté par une charge ponctuelle de 1 kN agissant au centre de gravité de la membrure intérieure (point 6).

Figure 14 Chargement excentré sur membrure intérieure

✓ Répartition des efforts

Les valeurs obtenues d'effort normal, N, en tête et en pied d'élément ainsi que les valeurs de réactions verticales sur appui, R_z, sont présentées dans les tableaux suivants :

• Chargement centré

Modèles sans panneau

Elément	Appui	Poutr	e en l 24	0 mm	Poutr	e en I 36	0 mm	Poutre	en I 450) mm
		Haut	Ba	as	Haut	B	as	Haut	Ba	S
		Ν	N	Rz	Ν	Ν	Rz	N	N	Rz
		(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
Membrure int	1	0,14	0,45	0,47	0,09	0,44	0,46	0,10	0,43	0,46
Ame	2			0,06			0,08			0,09
Membrure ext	3	0,14	0,45	0,47	0,09	0,44	0,46	0,10	0,43	0,46

Modèles avec panneau

Elément	Appui	Poutr	e en l 24	0 mm	Poutr	e en l 36	0 mm	Poutre	en I 450) mm
		Haut	Ba	as	Haut	Ba	as	Haut	Ba	S
		N	N	Rz	N	Ν	Rz	Ν	N	Rz
		(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
Membrure int	1	0,14	0,37	0,39	0,09	0,37	0,39	0,07	0,37	0,39
Ame	2			0,05			0,07			0,08
Membrure ext	3	0,11	0,42	0,44	0,07	0,41	0,43	0,05	0,40	0,42
Montant G	4	0,01	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06
Montant D	5	0,01	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06

• Chargement excentré

Modèles sans panneau

Elément	Appui	Poutr	e en l 24	0 mm	Poutr	e en I 36	0 mm	Poutre	en I 450) mm
		Haut	Ba	as	Haut	Ba	as	Haut	Ba	S
		N	N	Rz	N	N	Rz	N	N	Rz
		(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
Membrure int	1	0,94	0,45	0,47	0,93	0,43	0,45	0,91	0,42	0,45
Ame	2			0,06			0,08			0,09
Membrure ext	3	0,01	0,45	0,47	0,01	0,44	0,47	0,01	0,44	0,47

Modèles avec panneau

Elément	Appui	Poutr	e en l 24	0 mm	Poutr	e en l 36	0 mm	Poutre	en I 450) mm
		Haut	Ba	as	Haut	Ba	as	Haut	Ba	S
		Ν	N	Rz	N	N	Rz	N	N	Rz
		(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
Membrure int	1	0,95	0,19	0,20	0,94	0,22	0,22	0,94	0,24	0,25
Ame	2			0,05			0,07			0,08
Membrure ext	3	0,02	0,60	0,64	0,01	0,57	0,60	0,01	0,54	0,58
Montant G	4	0	0,06	0,06	0,05	0,05	0,05	0,05	0,05	0,05
Montant D	5	0	0,06	0,06	0,05	0,05	0,05	0,05	0,05	0,05

• Commentaires

Ces différents modèles mettent en évidence la redistribution de l'effort entre membrures sur la hauteur observée expérimentalement.

Dans le cas des modèles sans panneau, avec maintien latéral de la membrure extérieure, cette redistribution n'intervient forcément que sous effort normal excentré.

Dans le cas des modèles avec panneau, on constate que l'effort devient prépondérant en pied de la membrure extérieure, ce qui n'a pas été observé expérimentalement.

✓ Flambement

Les premiers modes de flambement obtenus correspondant à un mode global avec flexion-torsion de la poutre en l et la charge critique correspondante sont présentés ci-dessous :

• Chargement centré

Modèles sans panneau

50 5 1 1	20.0 LN	
50,5 KN	30,9 KIN	25,9 kN

Modèles avec panneau

Poutre en I 240 mm	Poutre en I 360 mm	Poutre en I 450 mm
61,5 kN	38,3 kN	31,4 kN
		and the second se
	4	

Modèles « équivalents » sans panneau avec membrure extérieure 113x50

Foure en 1240 min Foure en 1300 min Foure en 1430 min	Poutre en I 240 mm	Poutre en I 360 mm	Poutre en I 450 mm
---	--------------------	--------------------	--------------------

86,6 kN	Mode 2 : 71,3 kN	58,5 kN

• Chargement excentré

Modèles sans panneau

Poutre en I 240 mm	Poutre en I 360 mm	Poutre en I 450 mm
34,7 kN	19,9 kN	16,0 kN
THE		

• Modèles avec panneau

Poutre en I 240 mm	Poutre en I 360 mm	Poutre en I 450 mm
37,6 kN	22,7 kN	Mode 4 : 17,9 kN

Modèles « équivalents » sans panneau avec membrure extérieure 113x50

Commentaires

On constate que les modèles sans panneaux avec stabilisation latérale de la membrure extérieure donnent des résultats inférieurs à ceux avec panneau. Cela illustre que le panneau ne contribue pas uniquement à la stabilisation mais modifie la distribution des efforts entre membrures en soulageant la membrure intérieure libre.

Les valeurs de charge critique obtenues avec les modèles sans panneau où intervient une distorsion ne peuvent être directement interprétés en termes de résistance au flambement des montants. On peut simplement observer que les ordres de grandeur sont proches ou légèrement inférieurs aux valeurs caractéristiques obtenues expérimentalement.

Enfin, les résultats obtenus avec les modèles « équivalents » sans panneau avec membrure extérieure 113x50 sont très proches des valeurs théoriques d'effort normal critique élastique de flambement par flexion-torsion déterminés de manière analytique au §4.1.2., pour correspondre aux valeurs caractéristiques expérimentales dans le cas d'un effort normal centré.

4.1.4 Synthèse

Les tableaux comparatifs suivants récapitulent les différents résultats obtenus par essais et par analyses à l'aide d'équations et règles de calculs Eurocodes (méthode analytique) ainsi que par modélisations aux éléments finis.

Répartition des efforts

Chargement centré

Poutre en I 240 mm										
		Ni/N								
	Es	Essai Analytique MEF								
			(montant seul)		Sans panneau		Avec panneau			
Elément	Haut	Bas	Haut	Bas	Haut	Bas	Haut	Bas		
Membrure int	0,33	0,42	0,43	0,43	0,14	0,45	0,14	0,37		
Ame			0,14	0,14		0,06		0,05		
Membrure ext	0,21	0,36	0,43	0,43	0,14	0,45	0,11	0,42		

Poutre en I 360 mm										
		N _i /N								
	Es	Essai Analytique MEF								
			(monta	nt seul)	Sans panneau		Avec panneau			
Elément	Haut	Bas	Haut	Bas	Haut	Bas	Haut	Bas		
Membrure int	0,30	0,37	0,39	0,39	0,09	0,44	0,09	0,37		
Ame			0,21	0,21		0,08		0,07		
Membrure ext	0,27	0,20	0,39	0,39	0,09	0,44	0,07	0,41		

Poutre en I 450 mm										
		N;/N								
	Es	sai	Analy	/tique		M	EF			
			(monta	nt seul)	Sans panneau		Avec panneau			
Elément	Haut	Bas	Haut	Bas	Haut	Bas	Haut	Bas		
Membrure int	0,31	0,16	0,37	0,37	0,10	0,43	0,07	0,37		
Ame			0,26	0,26		0,09		0,08		
Membrure ext	0,09	0,33	0,37	0,37	0,10	0,43	0,05	0,40		

• Chargement excentré

Poutre en I 240 mm										
		N _i /N								
	Es	Essai Analytique MEF								
			(monta	nt seul)	Sans panneau		Avec panneau			
Elément	Haut	Bas	Haut	Bas	Haut	Bas	Haut	Bas		
Membrure int	0,79	0,35	0,91	0,91	0,94	0,45	0,95	0,19		
Ame			0,14	0,14		0,06		0,05		
Membrure ext	0,01	0,29	-0,05	-0,05	0,01	0,45	0	0,60		

Poutre en I 360 mm							
Ni/N							

	Essai		Analy	Analytique		MEF				
			(montant seul)		Sans panneau		Avec panneau			
Elément	Haut	Bas	Haut	Bas	Haut	Bas	Haut	Bas		
Membrure int	0,80	0,33	0,86	0,86	0,93	0,43	0,94	0,22		
Ame			0,21	0,21		0,08		0,07		
Membrure ext	-0,01	0,38	-0,07	-0,07	0,01	0,44	0,01	0,57		

Poutre en I 450 mm										
		N;/N								
	Es	Essai Analytique ME						EF		
			(montant seul)		Sans panneau		Avec panneau			
Elément	Haut	Bas	Haut	Bas	Haut	Bas	Haut	Bas		
Membrure int	0,79	0,24	0,82	0,82	0,91	0,42	0,94	0,24		
Ame			0,26	0,26		0,09		0,09		
Membrure ext	-0,02	0,25	-0,09	-0,09	0,01	0,44	0,01	0,54		

Résistance au flambement

• Chargement centré

Poutre en I 240 mm										
	Essai	Ana	lytique	MEF						
		Montant seul	Montant « équivalent »	Sans panneau	Avec panneau	Montant « équivalent » sans panneau				
Effort critique N _{cr} (kN)		8,1	81,4	50,5	61,5	86,6				
Résistance moyenne N _{mean} (kN)	74,9									
Résistance caractéristique N _k (kN)	60,6	5,3	51,2							

Poutre en I 360 mm										
	Essai	Ana	lytique	MEF						
		Montant seul	Montant « équivalent »	Sans panneau	Avec panneau	Montant « équivalent » sans panneau				
Effort critique N _{cr} (kN)		8,1	70,3	30,9	38,3	71,3				
Résistance moyenne N _{mean} (kN)	56,5									
Résistance caractéristique N _k (kN)	44,8	5,4	44,7							

Poutre en I 450 mm										
	Essai	Ana	lytique	MEF						
		Montant seul	Montant « équivalent »	Sans panneau	Avec panneau	Montant « équivalent » sans panneau				
Effort critique N _{cr} (kN)		8,2	59,7	25,9	31,4	58,5				

Résistance moyenne N _{mean} (kN)	47,8				
Résistance caractéristique Nk (kN)	41,6	5,4	38,2		

• Chargement excentré

	Poutre en I 240 mm										
	Essai	Ana	lytique	MEF							
		Montant seul	Montant « équivalent »	Sans panneau	Avec panneau	Montant « équivalent » sans panneau					
Effort critique N _{cr} (kN)				34,7	37,6	41,6					
Résistance moyenne N _{mean} (kN)	44,1										
Résistance caractéristique N _k (kN)	29,2	2,5	26,0								

		Р	outre en I 360 mi	m			
	Essai	Ana	lytique	MEF			
		Montant seul	Montant « équivalent »	Sans panneau	Avec panneau	Montant « équivalent » sans panneau	
Effort critique N _{cr} (kN)				19,9	22,7	34,8	
Résistance moyenne N _{mean} (kN)	37,4						
Résistance caractéristique N _k (kN)	28,8	2,5	24,9				

	Poutre en I 450 mm										
	Essai	Ana	lytique	MEF							
		Montant seul	Montant « équivalent »	Sans panneau	Avec panneau	Montant « équivalent » sans panneau					
Effort critique N _{cr} (kN)				16,0	17,9	26,8					
Résistance moyenne N _{mean} (kN)	31,2										
Résistance caractéristique N _k (kN)	24,3	2,4	23,1								

4.2 Essais de compression transversale sur traverse basse

Les résultats obtenus expérimentalement sont comparés à ceux déterminés par méthode analytique.

Les caractéristiques des sections des montants poutres en l testées sont récapitulées cidessous :

	1) Poutre en I 240 mm – membrures C24 45x38 mm ² – âme OSB 12 mm										
	bi	hi	Ai	l _{yi}	Ei	ai	EiAi	Eilyi+EiAiai ²			
	(mm)	(mm)	(mm²)	(mm ⁴)	(N/mm ²)	(mm)	(N)	(N.mm ²)			
1	45	38	1710	205770	11000	101	18810000	1,94144E+11			
2	12	164	1968	4410944	3000	0	5904000	13232832000			
3	45	38	1710	205770	11000	-101	18810000	1,94144E+11			
Total		240				202	43524000	(EI) _{ef} =			
								4,015214E+11			

	2) Poutre en I 360 mm – membrures C24 45x38 mm ² – âme OSB 12 mm								
	bi	hi	Ai	l _{yi}	Ei	ai	EiAi	Eilyi+EiAiai ²	
	(mm)	(mm)	(mm²)	(mm ⁴)	(N/mm ²)	(mm)	(N)	(N.mm ²)	
1	45	38	1710	205770	11000	161	18810000	4,89837E+11	
2	12	284	3408	22906304	3000	0	10224000	68718912000	
3	45	38	1710	205770	11000	-161	18810000	4,89837E+11	
Total		360				322	47844000	(EI) _{ef} =	
								1,048394E+12	

	3) Poutre en I 450 mm – membrures C24 45x38 mm ² – âme OSB 12 mm									
	bi	hi	Ai	l _{yi}	Ei	ai	EiAi	Eilyi+EiAiai ²		
	(mm)	(mm)	(mm²)	(mm ⁴)	(N/mm ²)	(mm)	(N)	(N.mm ²)		
1	45	38	1710	205770	11000	206	18810000	8,00485E+11		
2	12	374	4488	52313624	3000	0	13464000	1,56941E+11		
3	45	38	1710	205770	11000	-206	18810000	8,00485E+11		
Total		450				412	51084000	(EI) _{ef} =		
								1,757910E+12		

	4) Poutre en I 240 mm – membrures LVL 45x39 mm ² – âme HB.HLA1 8mm									
	bi	hi	Ai	l _{yi}	Ei	ai	EiAi	Eilyi+EiAiai ²		
	(mm)	(mm)	(mm²)	(mm ⁴)	(N/mm ²)	(mm)	(N)	(N.mm ²)		
1	45	39	1755	222446	13800	100,5	24219000	2,47688E+11		
2	12	162	1296	2834352	5300	0	6868800	15022065600		
3	45	39	1755	222446	13800	-100,5	24219000	2,47688E+11		
Total		240				201	55306800	(EI) _{ef} =		
								5,103975E+11		

	5) Poutre en I 360 mm – membrures LVL 45x39 mm ² – âme HB.HLA1 8mm									
	bi	hi	Ai	l _{yi}	Ei	ai	EiAi	Eilyi+EiAiai ²		
	(mm)	(mm)	(mm²)	(mm ⁴)	(N/mm ²)	(mm)	(N)	(N.mm ²)		
1	45	39	1755	222446	13800	160,5	24219000	6,26957E+11		
2	12	162	2256	14950512	5300	0	11956800	79237713600		
3	45	39	1755	222446	13800	-160,5	24219000	6,26957E+11		
Total		240				321	60394800	(EI) _{ef} =		
								1,33315E+12		

	6)	Poutre en I 450 mm – membrures C30 97x47 mm ² – âme OSB 10 mm							
	bi	hi	Ai	l _{yi}	Ei	ai	EiAi	Eilyi+EiAiai ²	
	(mm)	(mm)	(mm²)	(mm ⁴)	(N/mm ²)	(mm)	(N)	(N.mm ²)	
1	97	47	4559	839236	13000	201,5	59267000	2,41728E+12	

2	12	356	3560	37598347	3000	0	10680000	1,12795E+11
3	97	47	4559	839236	13000	-201,5	59267000	2,41728E+12
Total		450				403	129214000	(EI) _{ef} = 4,94736E+12

4.2.1 Détermination de la résistance à la compression transversale de la traverse suivant l'Eurocode 5

La résistance caractéristique à la compression transversale de la traverse sous le montant poutre en l chargé est déterminée conformément à l'Eurocode 5, à partir des paramètres de résistance suivants :

> f_{c,90,k} résistance caractéristique en compression perpendiculaire du LVL disposé à plat.

 $f_{c,90,k}$ = 3,8 N/mm² suivant la D.O.P du fabricant (Ultralam)

 k_{c,90}, coefficient de majoration de la résistance en compression transversale du LVL à plat,

 $k_{c,90} = 1,4$ suivant le LVL Handbook

 Suivant le LVL Handbook, dans la cas du LVL à plat, la longueur de contact réelle, peut être augmentée ici de chaque côté d'une longueur additionnelle de 30 mm au droit des membrures et de la largeur de l'âme au droit de celle-ci.

✓ Chargement centré

Dans le cas du chargement centré, toute la section composite est en compression.

La répartition des efforts dans la section composite sous effort normal centré et sous effort normal excentré s'obtient comme décrit précédemment au §4.1.1.

L'effort en pied au droit de chaque partie est proportionnel à la raideur axiale de chaque partie par rapport à la raideur axial totale.

Figure 15 Répartition de la contrainte de compression en pied de montant

La résistance caractéristique à la compression transversale de la traverse sous le montant poutre en l est déterminée par la relation suivante :

$$R_{c,90,k,EC5} = \min\left(\frac{\sum E_i A_i}{E_i A_i} A_{ef,i}\right) k_{c,90} f_{c,90,k}$$

A_{ef,i}, aire de contact efficace en compression perpendiculaire au droit de chaque partie du montant poutre en I, déterminée à partir des longueur et largeur de contact réelles et de la longueur additionnelle permise.

Les valeurs ainsi obtenues sont présentées et comparées aux valeurs déterminées expérimentalement dans le tableau suivant :

		1	2	3	4	5	6
	R _{c,90,k,EC5} (kN)	49,12	53,99	61,71	49,75	54,33	85,59
10/	F _{c,90,max,k,essais} (kN)	43,20	54,79	54,87	26,58	39,87	62,31
170	R _{c,90,k,EC5} / F _{c,90,max,k,essais}	114%	99%	112%	187%	136%	137%
2 50/	Fc,90,max,k,essais2,5% (kN)	50,23	50,20	ND	41,99	51,73	87,18
2,3%	R _{c,90,k,EC5} / F _{c,90,max,k,essais}	98%	108%	ND	118%	105%	98%

On constate que les valeurs théoriques déterminées suivant l'Eurocode 5 sont quasiment toutes supérieures aux valeurs caractéristiques déterminées expérimentalement au §3.3.1 en considérant une déformation de 1% selon NF EN 408 pour une déformation de 1%.

Elles sont plus proches des valeurs expérimentales déterminées au §3.3.2 pour une déformation de 2,5%.

Le report de ces valeurs théoriques sur les courbes d'essai montre dans tous les cas le caractère sécuritaire de l'approche par calcul, la plastification de la traverse n'étant jamais atteinte.

Etude expérimentale du comportement de parois avec montants poutres en I sous chargement excentré

Chargement excentré

Dans le cas du chargement excentré au droit du centre de gravité de la membrure 1 ($e=a_1$) du montant poutre en I, la section composite est partiellement comprimée.

La répartition des efforts dans la section composite sous effort normal centré et sous effort normal excentré s'obtient comme décrit précédemment au §4.1.1.

L'effort en pied au droit de la membrure chargée dépend de la raideur axiale et de la rigidité efficace en flexion de la poutre composite.

Figure 18 Aire de contact efficace en compression perpendiculaire

Figure 17 Répartition de la contrainte de compression en pied de montant

La résistance caractéristique à la compression transversale de la traverse est déterminée par la relation suivante :

$$R_{c,90,k,EC5} = \frac{\sum E_i A_i (EI)_{ef}}{E_1 A_1 ((EI)_{ef} + a_1^2 \sum E_i A_i} A_{ef,1} k_{c,90} f_{c,90,k}$$

A_{ef,1}, aire de contact efficace en compression perpendiculaire au droit de la membrure chargée du montant poutre en I, déterminée à partir des longueur et largeur de contact réelles et de la longueur additionnelle permise.

Les valeurs ainsi obtenues sont présentées et comparées aux valeurs déterminées expérimentalement, dans le tableau suivant :

Les valeurs ainsi obtenues sont présentées et comparées aux valeurs déterminées expérimentalement dans le tableau suivant :

		1	2	3	4	5	6
	R _{c,90,k,EC5} (kN)	23,32	24,73	27,01	23,75	25,07	41,54
10/	F _{c,90,max,k,essais} (kN)	30,27	39,05	30,29	30,03	38,65	40,28
170	R _{c,90,k,EC5} / F _{c,90,max,k,essais}	77%	63%	89%	79%	65%	103%
2 50/	Fc,90,max,k,essais2,5% (kN)	42,23	46,03	53,07	38,09	41,02	57,04
∠,3%	R _{c,90,k,EC5} / F _{c,90,max,k,essais}	55%	54%	51%	62%	61%	73%

Les valeurs théoriques déterminées suivant l'Eurocode 5 sont inférieures ou égales aux valeurs caractéristiques déterminées expérimentalement.

L'approche par calcul est sécuritaire. Le report de ces valeurs théoriques sur les courbes d'essai montre que l'on se situe en partie élastique, bien avant d'atteindre la plastification de la traverse.

4.2.2 Détermination de la résistance à la compression transversale de la traverse suivant le projet de révision de l'Eurocode 5

La résistance caractéristique à la compression transversale de la traverse sous le montant poutre en l chargé est déterminée conformément à la méthode envisagée dans le projet de révision de l'Eurocode 5, à partir des paramètres de résistance suivants :

> f_{c,90,k},résistance caractéristique en compression perpendiculaire du LVL disposé à plat.

 $f_{c,90,k} = 3,8 \text{ N/mm}^2 \text{ suivant la D.O.P du fabricant (Ultralam)}$

k_{c,90}, coefficient d'arrangement de la charge en compression transversale,

$$k_{c,90} = \sqrt{\frac{l_{ef}}{l_c}}$$

Avec

 I_{ef} , longueur effective de diffusion de la contrainte de compression perpendiculaire, en considérant une diffusion à 45° I_c , longueur de contact de la charge

 p_k, coefficient tenant compte du comportement du matériau et du niveau de déformation perpendiculaire considéré.

 $k_p=1,3$ pour le LVL à plat, pour une déformation sur la hauteur de 2,5%.

✓ Chargement centré

Dans le cas du chargement centré, la résistance caractéristique à la compression transversale de la traverse est déterminée par la relation suivante :

$$\mathbf{R}_{\mathsf{c},90,\mathsf{k},\mathsf{EC5}} = \min\left(\frac{\sum E_i A_i}{E_i A_i} \mathbf{A}_{\mathsf{c},\mathsf{i}}\right) \mathbf{k}_{\mathsf{p}} \mathbf{k}_{\mathsf{c},90} \mathbf{f}_{\mathsf{c},90,\mathsf{k}}$$

A_{c,i}, aire de contact en compression perpendiculaire au droit de chaque partie du montant poutre en I.

Les valeurs ainsi obtenues sont présentées et comparées aux valeurs déterminées expérimentalement dans le tableau suivant :

		1	2	3	4	5	6
	R _{c,90,k,prEC5} (kN)	33,86	37,22	45,81	34,29	37,45	68,18
1%	Fc,90,max,k,essais (kN)	43,20	54,79	54,87	26,58	39,87	62,31
	R _{c,90,k,prEC5} / F _{c,90,max,k,essais}	78%	68%	83%	129%	94%	109%
2,5%	Fc,90,max,k,essais2,5% (kN)	50,23	50,20	ND	41,99	51,73	87,18
	R _{c,90,k,prEC5} / F _{c,90,max,k,essais}	67%	74%	ND	82%	72%	78%

Les valeurs théoriques déterminées suivant la méthode envisagée dans le projet de révision de l'Eurocode 5 sont inférieures aux valeurs caractéristiques déterminées expérimentalement au §3.3.2 en considérant une déformation de 2,5% et plus proches de celles correspondant à une déformation de 1%.

✓ Chargement excentré

Dans le cas du chargement centré, la résistance caractéristique à la compression transversale de la traverse est déterminée par la relation suivante :

$$R_{c,90,k,EC5} = \frac{\sum E_i A_i (EI)_{ef}}{E_1 A_1 ((EI)_{ef} + a_1^2 \sum E_i A_i} A_{c,1} k_{c,90} f_{c,90,k}$$

A_{c,1}, aire de contact en compression perpendiculaire au droit de la membrure chargée.

Les valeurs ainsi obtenues sont présentées et comparées aux valeurs déterminées expérimentalement dans le tableau suivant :

		1	2	3	4	5	6
	R _{c,90,k,prEC5} (kN)	16,08	17,05	18,62	16,37	17,28	33,09
1%	Fc,90,max,k,essais (kN)	30,27	39,05	30,29	30,03	38,65	40,28
	Rc,90,k,prEC5 / Fc,90,max,k,essais	53%	44%	61%	55%	45%	82%
2,5%	Fc,90,max,k,essais2,5% (kN)	42,23	46,03	53,07	38,09	41,02	57,04
	R _{c.90,k,prEC5} / F _{c.90,max,k,essais}	38%	37%	35%	43%	42%	58%

Les valeurs théoriques déterminées suivant la méthode envisagée dans le projet de révision de l'Eurocode 5 sont nettement inférieures aux valeurs caractéristiques déterminées expérimentalement au §3.3.2 en considérant une déformation de 2,5% et également inférieures à celles correspondant à une déformation de 1%.

5. CONCLUSIONS

✓ Les essais de compression sur trumeau de mur ossature bois avec montants poutre en l en grandeur d'emploi (2,8 m de hauteur par 1,2 m de largeur) ont permis de mettre en évidence des niveaux de résistance très nettement supérieurs à ceux pouvant être pris en compte avec les règles de calcul actuellement en vigueur.

A titre indicatif, pour atteindre les valeurs de résistance caractéristique obtenues par essais, un dimensionnement suivant l'EC5 nécessiterait de prévoir des éléments de stabilisation de la membrure intérieure pour diviser la longueur libre suivant la faible inertie par 3 (poutre 450 mm) à 4 (poutre 240 mm).

Cette méthode, prenant uniquement en compte le risque de flambement par flexion de la membrure considérée seule, très sécuritaire, n'est pas représentative du comportement observé lors des essais.

Les ruptures sont intervenues par flambement en flexion torsion de la poutre en I dont une seule membrure est maintenue latéralement par le panneau de contreventement.

 L'analyse d'un tel comportement peut difficilement être menée à l'aide de méthodes analytiques. L'approche simplifiée présentée ici consiste à considérer le montant stabilisé par le panneau comme un montant équivalent dont la membrure côté panneau présente des dimensions surévaluées. On peut alors utiliser la théorie du flambement par flexion torsion pour les sections ouvertes à un seul axe de symétrie qui a notamment été reprise dans les Eurocodes de construction métallique acier (EC3) et aluminium (EC9).

Suivant cette démarche, les valeurs de résistance caractéristiques obtenues pour les trois configurations testées peuvent être approchées en considérant une section en l avec une membrure fictive de 113x50mm² du côté du panneau.

• L'analyse par modélisation aux éléments finis de ces montants « équivalents » montre une bonne corrélation avec les résultats de cette approche analytique.

Les modélisations a priori plus représentatives des essais, avec le panneau de contreventement et les montants d'extrémité, donnent des charges critiques moins élevées. Celles-ci, en partie liés à une distorsion du panneau, sont difficilement interprétables en termes de résistance caractéristique. On voit toutefois qu'elles sont inférieures d'environ 20% (poutres 360 et 450 mm) ou proches (poutre 240 mm) des valeurs obtenues par essais.

S'il est vraisemblable que les propriétés mécaniques des membrures testées sont supérieures aux valeurs théoriques liées au classement mécanique, la prise en compte d'une classe mécanique supérieure dans ces modèles avec panneaux n'augmente pas significativement les valeurs de charge critique.

- Ces essais ont également permis d'évaluer la répartition de l'effort normal entre membrures. Les résultats obtenus par essais ainsi que par modélisations aux éléments finis s'accordent à montrer une redistribution des efforts entre membrures liés au panneau de contreventement qui soulage la membrure libre.
 - Dans le cas d'un effort normal centré, cette redistribution reste limitée et on peut considérer une répartition équitable de l'effort en pied, tel qu'on la retiendrait de manière analytique en considérant le montant seul.
 - En revanche dans le cas d'un effort excentré sur la membrure libre, la redistribution est plus significative. La prise en compte intégrale de l'effort en pied de celle-ci apparait très sécuritaire.
- ✓ Les essais de compression transversale de traverse ont permis de s'assurer du bon comportement sous montant poutre en l avec chargement centré et excentré.

Les différentes courbes d'essais effort/déplacement montrent que les valeurs de résistance caractéristiques déterminées par calcul conformément à l'Eurocode 5 correspondent à une déformation de la traverse demeurant dans le domaine élastique ou entrant légèrement en plastification dans le cas du chargement centré.

Dans le cas du chargement excentré, la détermination par calcul de la résistance en compression transversale est encore plus sécuritaire avec un niveau de déformation moindre qu'en chargement centré, la redistribution des efforts en pied de montant entre membrure chargée et membrure non chargée observée par essais n'étant pas prise en compte.

✓ Les résultats de cette campagne expérimentale montrent que le dimensionnement des parois ossatures bois avec montants poutres en l peut être optimisé.
 Sur la base des éléments d'analyse présentés dans cette étude, les principes de dimensionnement adaptés pourraient être définis dans le cadre d'une future révision du Guide Pratique de « conception des parois verticales en poutres en l à base de bois conformément aux Eurocodes ».